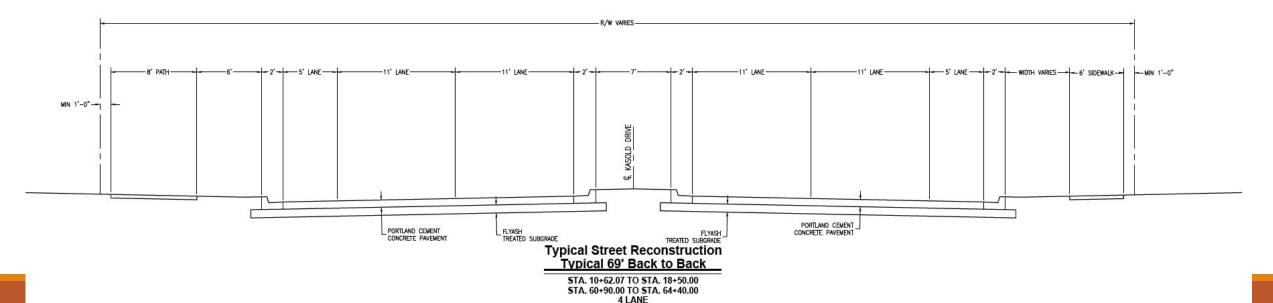
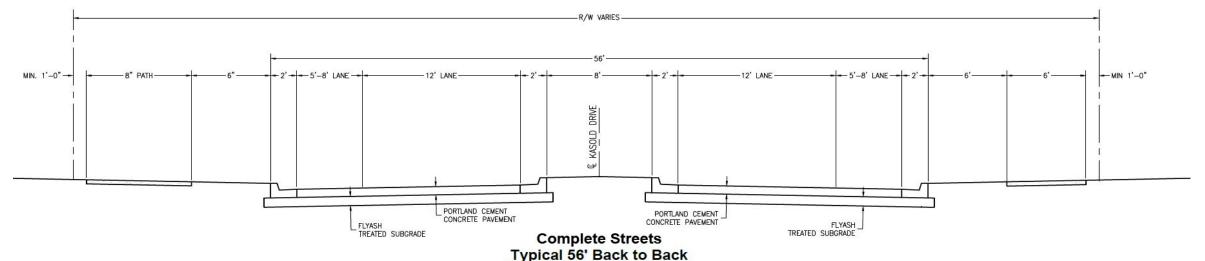
Kasold Drive Improvement Project

6TH STREET TO BOB BILLINGS PARKWAY


Project Scope/Concept Study

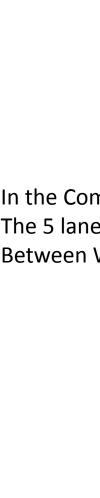
- Failing pavement and base (PCI 43.8)
- Full Reconstruction needed – base failures, missing curb
- Add sidewalk and bicycle lanes
- CIP 2017 Budget -Infrastructure sales tax
- Concept Study Feb.2015 2016

Option 1-Typical Street Reconstruction


- 2 lanes in each direction 11 ft
- Median with turn lanes
- 5 Ft. Bicycle lanes
- 6 Ft. Sidewalk and 8 Ft. Shared Use Path
- Traffic signal @ Harvard

Option 2 - Complete Street Reconstruction

- 1 lane in each direction (W. 9th Ct. to 14th Street)
- 2 lanes each direction at signal approaches (6th to W. 9th Ct. & 14th to 15th)
- Median With Turn Lanes
- 5 Ft Bike Lane with 3 Ft Buffer.
- 8 Ft Shared Use path & 6 Ft Sidewalk
- Roundabout at Harvard


STA. 20+75.00 TO STA. 35+53.34 STA. 38+00.00 TO STA. 56+50.00

2 LANE (NOT TO SCALE)

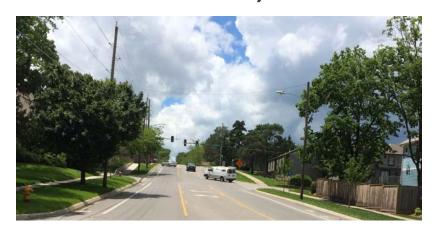
In the Complete Streets Option the 5 lane section is maintained between BBP and 14 Street

In the Complete Streets Option The 5 lane section is maintained Between W. 6th St and W. 9th Ct.

Capacity

- Capacity of a roadway corridor is limited by the traffic flow/ control at intersections.
- -Both options can accommodate projected traffic volumes
- Both options will maintain the Arterial Street and Truck Delivery Route Designations
- Both options will be safer than the existing roadway

Number of Traffic Lanes	
Capacity of Single Lane	1,900 VPH
Capacity of Double Lane	3,800 VPH
Peak Hour Kasold, Current	651 VPH
Peak Hour Kasold, 2040	736 VPH


Lane Reconfiguration	
Lane Reconfiguration Parameters	10,000 – 25,000 VPD
Kasold ADT, Current	14,735 VPD
Kasold ADT, 2040	16,576 VPD

Roundabout or Signal?		
Capacity Single Lane Roundabout	1,250 – 1,600 VPH	
Capacity Double Lane Roundabout	2,400 – 3,000 VPH	
Peak Hour at Kasold & Harvard, Current 651 VPH		
Peak Hour at Kasold & Harvard, 204	0 736 VPH	

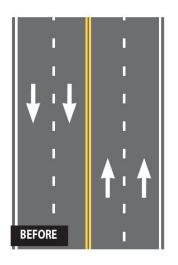
Case Studies – Lane Reconfiguration

9th Street, East Of Emery, Lawrence, KS

2011 - 1553 vph on 9th St.

9th & Miss. PM Peak hour

- 2015 1579 vph on 9th St.
- 9th & Maine PM Peak hour 2011 - 1494 vph on 9th St.
- 2015 1553 vph on 9th St.

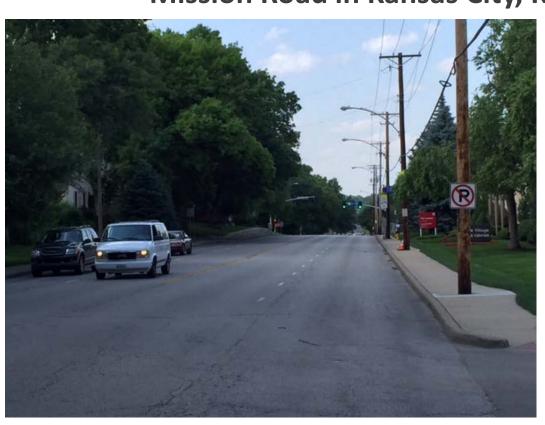

- ADT = 16,755 VPD
- Better traffic flow
- Safer turning movements and bicycle lanes


9th & Emery PM Peak hour

2011 - 1553 vph on 9th St.

2015 - 1454 vph on 9th St.

Arterials in Kansas City, MO



- Currently evaluating all arterials with ADT < 20,000 VPD
- Plan to implement lane reconfiguration at time of repaving

Case Studies – Lane Reconfiguration

Mission Road in Kansas City, KS and Prairie Village, KS

- ADT's: 15,000 25,000 VPD
- Kansas City, KS: from 43rd Street to Belrose Manor
- Prairie Village: from 71st Street to 75th Street VERY similar to Kasold corridor
- Various cities are planning additional lane reconfiguration improvements along the Mission Road corridor

Case Studies – Lane Reconfiguration

- Burton Street, Grand Rapids, MI
- Arterial (ADT = 15,000 VPD)
- School & Park Nearby
- Opponents With Concerns
 Over Congestion, Turning
 Gaps

- **Slower Speeds**
- Less Congestion
- Increased Bicycle Traffic
- No Apparent Diversion

- Arterial (ADT = 17,000 VPD)
- Speed Limit 40/45
- Suburban Area

- 70% Reduction In Crashes
- Travel Time Remained Consistent
- Increase In Bicycle Use
- 74% Agreed It Was An Improvement

Case Studies – Lane Reconfiguration for Speed Reduction

- Luten Avenue in Staten Island, New York
 - Road Diet Near School
 - RESULTS: The percentage of vehicles exceeding the speed limit <u>decreased by 34 percent</u> along southbound Luten Avenue and <u>decreased by 21 percent</u> in the northbound direction.
- US 75 in Sioux County, Iowa Road Diet

Percent of vehicles traveling more than 5 mph	BEFORE	AFTER	
over the speed limit	43 percent	13 percent	

FHWA / KDOT — Road Reconfiguration Review

- FHWA has ongoing initiative to review road reconfiguration projects
- Worked with FHWA Staff and consultant to review Kasold Concept Plans and Traffic Study
- FHWA concurred with the feasibility for the 'Complete Streets' alternative
- KDOT also reviewed and has agreed to fund a single lane Roundabout at Kasold and Harvard.
- KDOT's funding is Federal Safety Fund dollars and canNOT be re-allocated to other State needs

Benefits of Lane Reconfiguration

- Reduced Conflict Points
- Improved Sight Lines
- Less Difficult Crossing Maneuvers
- Lower and More Uniform Speeds
- Traffic Demands Still Met
- Improved Conditions for Others
- Supports Local Business
- Lower Construction Costs
- Less pavement to Maintain
- Less Storm Water Infrastructure and Runoff
- Less Roadway for snow removal and street sweeping

Accident Data Changing a 4 way STOP to Roundabout

Wakarusa & Inverness (Completed in Jan. 2015) - 26% decrease in crashes and 100% decrease in injury crashes

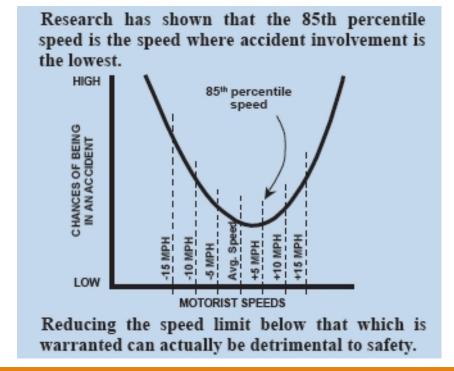
- 2.7 crashes per year before (8 total in 3 years prior) 1 injury crashes
- 2.0 crashes per year after (3 total in 1.5 years after) 0 injury crashes

19th & Barker (Completed in 2004) - 25% decrease in crashes and 75% decrease in injury crashes

- 4.0 crashes per year before (12 total in 3 years prior) 4 injury crashes
- 3.0 crashes per year after (9 total in 3.0 years after) 1 injury crashes

City of Lawrence currently has 20 roundabout controlled intersections and 92 signal controlled intersections

Maintenance Costs


- A traffic signal has an estimated annual operational cost of \$8000 per year, including electrical costs and maintenance of equipment.
- A roundabout has an estimated annual maintenance cost of \$1000 per year, including lighting, irrigation, and maintenance of landscaping.
- Pavement life is expected to be 30+ years. Over the life of the pavement minor maintenance will be needed such as crack sealing and minor patching. There is approximately 20% less pavement between the two options.
- 20% less pavement will also take less time for snow removal and will have less storm water runoff

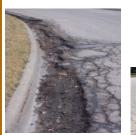
SPEED

- •Definition: The 85th percentile speed is the speed 85% of the traffic drives at or below, with 15% exceeding.
- •The 85th percentile speed is the safest speed and recommended to be used to establish speed limits in accordance with the Manual on Uniform Traffic Control Devices.
- •For every five miles per hour you drive over or under the 85th percentile speed your chances of being involved in a crash increase.

•Physically controlling the speed with Narrow lanes or traffic calming is more efficient than enforcement and is 24/7

Location	Speed Limit	85 th Percentile Speed
Kasold between 13 th & 14 th	35 mph	43 mph
Kasold at 10 th Street	30 mph	41 mph
Kasold between 8 th & 10 th	30 mph	37 mph
27 th St & Kasold Dr crosswalk	40 mph	52 mph

What can \$1 million fund?



31 residential blocks of mill and overlay

67 blocks of Micro-surfacing and patching

25,000 LF of C&G (Approx. 21 blocks both sides)

Harvard Road

Sidewalks

Kasold 6th to Peterson (5th Ter to Tomahawk Dr) \$250K Sidewalk on one side of all SRTS \$230K Repair 650 of the 3760 non ADA compliant ramps \$520K Sidewalk on all Arterials* \$330K

Other Projects

East 15th -Maple to Brook

Wakarusa/Overland Intersection

Kasold – 22nd to Clinton

Comparison of Costs

TYPICAL STREET RECONSTRUCTION	N OPTION *	COMPLETE STREETS OPTION *	
ESTIMATED ROAD CONSTRUCTION	\$5.40M	ESTIMATED ROAD CONSTRUCTION	\$4.64M
ESTIMATED WATERLINE CONSTRUCTION	\$0.57M	ESTIMATED WATERLINE CONSTRUCTION	\$0.57M
CONCEPT DESIGN COSTS	\$0.13M	CONCEPT DESIGN COSTS	\$0.13M
ESTIMATED FINAL DESIGN & CA	\$0.45M	ESTIMATED FINAL DESIGN & CA	\$0.45M
TOTAL COST TO CITY OF LAWRENCE	\$6.55M	FEDERAL/STATE SAFETY FUNDING	(\$0.475M)
		TOTAL COST TO CITY OF LAWRENCE	\$5.32M

DIFFERENCE IN COST = \$1,230,000

SHARED-USE PATH ON KASOLD – 6TH STREET TO PETERSON ROAD ~ \$250,000

* Does not include property acquisition costs, assumes traffic signal at 8th Street

Comparison of Options

	Typical Street Reconstruction	Complete Streets
Speed	Minimal reduction in overall speeds	Road Diets reduce the aggressive/top-end speeders and overall speed of a
		corridor
Effect on collisions	No anticipated reduction	<u>Road Diets</u>
		Create less conflict points.
		Reduction in vehicle collisions by 40 percent.
		Reduction in injury collisions by 76 percent.
		<u>Roundabouts</u>
		Create less conflict points
		76 percent reduction in injury crashes
		90 percent reduction in fatal and incapacitating injuries
Bicycle Lanes	5 ft bicycle lanes	Buffered 5 ft bicycle lane (8 ft total); improves safety for bicyclists by creating
		more space between vehicle lane and bicycle lane
Pedestrian Crossings	No change in distance to cross roadway	Shorter distance to cross roadway; improves safety for pedestrians/students
Lane capacity	Accommodates future traffic demands	Accommodates future traffic demands
Driving lane width	11 ft	12 ft
Intersection control	Traffic Signal	Roundabout
Harvard & Kasold	Level of service A-B	Level of Service A-B
R/W & Easements	Additional R/W or Easement needed	Not likely
Construction Cost	\$5.4 million	\$4.64 million

Complete Streets Option

✓ Increase in Safety

- Reduction in Vehicle Speeds
- Reduction In Vehicle Collisions And Injury Collisions at Kasold & Harvard
- Shorter Pedestrian/School Crossings
- Buffered Bike Lanes Provide Improved Safety for Bicyclists
- Extension of Bicycle/Pedestrian Facilities North To Peterson

✓ Context Sensitive Design For Residential Area

Improved livability and "feel" of the neighborhood

✓ Lower Costs

- Additional R/W & Easement Requirements are UNLIKELY
- Estimated Construction Cost Savings to the City Of \$1,230,000
- Roundabout Requires Less Maintenance and Operational Costs Compared to a Traffic Signal

Traffic Signal at 8th & Kasold

- ✓ Increased Safety
- ✓ Better Traffic Flow