Kasold Drive The Improvement Project 6TH STREET TO BOB BILLINGS PARKWAY # KASOLD DR. Simprovement Project # Project Scope/Concept Study - Failing pavement and base (PCI 43.8) - Full Reconstruction needed – base failures, missing curb - Add sidewalk and bicycle lanes - CIP 2017 Budget -Infrastructure sales tax - Concept Study Feb.2015 2016 # Public/Stakeholder Outreach #### **PUBLIC MEETINGS** - May 27, 2015 neighborhood meeting at Christ Community Church - June 16, 2015 Livewell Healthy Built Environment - July 7, 2015 Area Business Owners Meeting at University Bank - July 21, 2015 Presbyterian Manor Meeting - July 21, 2015 Bicycle Advisory Committee - September 30, 2015 Lawrence Pedestrian Coalition #### STAKEHOLDER OUTREACH - Sunset Hills Neighborhood Association - USD 497 School Crossing At Harvard and Kasold - City Utilities Department Waterline and Sewer - Westar, Black Hills, AT&T & WOW, Lawrence Fire Medical Department #### **WEBSITE** - Facilitates Public Involvement - Provides Real-Time Updates #### Historic Traffic Data - Traffic relatively stable since 1992 - Actual growth rate = approx. 0.4% - Growth factor used for projections = 0.5% - Fully developed corridor - Considers K-10/SLT and BBP extension #### Comparison of Record KDOT's 24-Hour Traffic Volumes (vehicles per day, VPD) | Segment | 1992 | 1995 | 1998 | 2001 | 2004 | 2007 | 2010 | 2013 | |-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------| | Kasold, 6 th -8th | 11,105 | 12,955 | 13,370 | 14,840 | 15,155 | 13,645 | 13,935 | 13,925 | | Kasold, 14 th -
BBP | 13,220 | 15,265 | 17,960 | 15,780 | 16,640 | 14,195 | 14,280 | 14,735 | | Harvard, East
App. | N/A | 2525 | 3290 | 3750 | 4055 | 3270 | 2990 | 3035 | | Harvard, West
App. | N/A | N/A | 4500 | 3660 | 4105 | 3855 | 3745 | N/A | # **Traffic Data** | Current Traffic Counts (vehicles per day, VPD) | | | | | |--|--------|--|--|--| | Kasold Drive | 14,735 | | | | | Harvard Road | 3,035 | | | | | Kasold & Harvard | 17,902 | | | | | 8 th St at Kasold | 2,225 | | | | | Bus/Truck Traffic | < 3% | | | | | 2040 Projected Traffic Counts (vehicles per day, VPD) | | | | | |--|------|--|--|--| | Kasold Drive 16,576 | | | | | | Harvard Road 3,414 | | | | | | Kasold & Harvard 20,139 | | | | | | 8 th St at Kasold 2,515 | | | | | | Bus/Truck Traffic | < 3% | | | | #### Peak Traffic Volumes #### **Current** Peak Hour Traffic Volumes along Kasold, (vehicles per hour, VPH), AM/(PM) | Segment | NB | SB | Total | |--|-----------|-----------|-------------| | 6 th – 8th | 518/(707) | 531/(589) | 1049/(1296) | | 8 th – Harvard | 499/(526) | 436/(531) | 935/(1057) | | Harvard – 13th | 353/(651) | 511/(523) | 864/(1174) | | 13 th - 14 th | 361/(654) | 508/(526) | 869/(1180) | | 14 th – BBP (15 th) | 359/(790) | 489/(548) | 848/(1338) | #### **2040 Projected** Peak Hour Traffic Volumes along Kasold, (vehicles per hour, VPH), AM/(PM) | Segment | NB | SB | Total | |--|-----------|-----------|-------------| | 6 th – 8th | 582/(795) | 597/(662) | 1180/(1458) | | 8 th – Harvard | 561/(591) | 490/(597) | 1051/(1189) | | Harvard – 13th | 397/(732) | 574/(588) | 972/(1320) | | 13 th - 14 th | 406/(735) | 571/(591) | 977/(1327) | | 14 th – BBP (15 th) | 403/(888) | 550/(616) | 954/(1505) | #### What Did We Consider? - 5 Lanes (2 Through Lanes in each direction and TWLTL) - 3 Lanes (1 Through Lane in each direction and TWLTL) - 4 Lane with Median & Left Turn Lanes - 2 Lane with Median & Left Turn Lanes - Mountable Median - Bicycle Lanes - Buffered Bicycle Lanes - Sidewalk - Shared Use Path - Traffic Signal - Single & Double Lane Roundabouts - Stop-controlled Intersections - Restricted Turns - Pedestrian Beacon - Non-controlled Intersection - No Improvements # Options Modeled & Evaluated Typical Street Reconstruction Option 8th Street Intersection Stop Sign, Traffic Signal, Roundabout, Pedestrian Beacon, Restricted Turns - Replacement of Water Distribution System - Extension of Shared Use Path north to Peterson # **Existing Kasold Drive** # Option -Typical Street Reconstruction - 2 lanes in each direction - Median with turn lanes - Bicycle lanes & Sidewalk - Traffic signal @ Kasold ## Typical Street Reconstruction Option STA. 10+62.07 TO STA. 18+50.00 STA. 60+90.00 TO STA. 64+40.00 - 11 foot driving lanes - 5 foot bicycle lanes - 8' Shared-use path and 6' Sidewalk - Narrower median # Option -Complete Street Reconstruction - 1 lane in each direction (8th to 14th Street) - 2 lanes each direction at signal approaches (6th to 8th & 14th to 15th) - Median With Turn Lanes - Buffered Bike Lanes - Extended Sidewalk Network - Roundabout at Kasold #### **Complete Streets Option** #### Typical 56' Back to Back STA. 20+75.00 TO STA. 35+53.34 STA. 38+00.00 TO STA. 56+50.00 2 LANE (NOT TO SCALE) - 12 foot driving lane - 5-8 feet for bicycle lane - Median width stays same - 8' Shared-use path & 6' Sidewalk # **Evaluation of Options** | Number of Traffic Lanes | | | | | | |---------------------------|-----------|--|--|--|--| | Capacity of Single Lane | 1,900 VPH | | | | | | Capacity of Double Lane | 3,800 VPH | | | | | | Peak Hour Kasold, Current | 651 VPH | | | | | | Peak Hour Kasold, 2040 | 736 VPH | | | | | | Roundabout or Signal? | | | | | |---|-------------------|--|--|--| | Capacity Single Lane Roundabout | 1,250 – 1,600 VPH | | | | | Capacity Double Lane Roundabout 2,400 – 3,000 VPH | | | | | | Peak Hour at Kasold & Harvard, Current 651 VPH | | | | | | Peak Hour at Kasold & Harvard, 204 | 0 736 VPH | | | | | Lane Reconfiguration * | | | | | |---------------------------------|---------------------|--|--|--| | Lane Reconfiguration Parameters | 10,000 – 25,000 VPD | | | | | Kasold ADT, Current | 14,735 VPD | | | | | Kasold ADT, 2040 | 16,576 VPD | | | | ^{*} Lane reconfiguration parameters have been compiled by numerous studies and similar projects performed and constructed over the past two decades. #### Level of Service Results #### Harvard & Kasold, AM/PM | Approach | Existing Cond. LOS | Roundabout Option
LOS | Signal Option LOS | |----------|---------------------|--------------------------|--------------------| | | Delay (sec.) | Delay (sec.) | Delay (sec.) | | EB | B/(B) | B/(A) | B/(B) | | | 13.2/(12.7) | 10.1/(8.1) | 11.4/(12.4) | | WB | B/(B) | A/(A) | A/(B) | | | 11.2/(13.8) | 6.3/(9.6) | 9.4/(15.6) | | NB | B/(C) | A/(B) | A/(A) | | | 12.4/(17.2) | 8.6/(9.4) | 8.4/(6.9) | | SB | B/(B) | A/(B) | A/(B) | | | 13.3/(14.8) | 9.2/(11.7) | 8.8/(11.0) | ## Level of Service Results #### 8th & Kasold, AM/(PM) | Approach | Existing Cond.
LOS
Delay (sec.) | Roundabout Option LOS Delay (sec.) | 3-Way Stop
Option
LOS
Delay (sec.) | E-Leg Stop Option
LOS
Delay (sec.) | Signal Option
LOS
Delay (sec.) | |----------|---------------------------------------|------------------------------------|---|--|--------------------------------------| | WB | B/C | A/(B) | B/(C) | C/(D) | A/(A) | | | 11.9/(15.1) | 8.8/(12.3) | 11.9/(15.1) | 21.9/(26.7) | 6.4/(6.8) | | NB | B/(C) | B/(B) | B/(C) | A/(A) | A/(A) | | | 14.3/(16.6) | 13.6/(10.6) | 14.3/(16.6) | 0/(0) | 3.9/(5.5) | | SB | C/(C) | B/(B) | C/(C) | A/(A) | A/(A) | | | 15.7/(17.2) | 11.6/(11.7) | 15.7/(17.2) | 2.8/(1.7) | 5.5/(6.5) | #### **Estimated Travel Times** #### Kasold Drive, 6th Street to Bob Billings Parkway, NB + SB Totals, (minutes) | | Existing
Conditions | Typical Street
Stop Signs @ 8 th
Signal @ Harvard | Typical Street
Signal @ 8 th
Signal @ Harvard | Complete Streets
Signal @ 8 th
Roundabout @ Harvard | |--------------------|------------------------|--|--|--| | AM Peak
Current | 7.1 | 6.6 | 6.3 | 6.3 | | PM Peak
Current | 6.8 | 6.5 | 6.2 | 6.3 | | AM Peak 2040 | 7.2 | 7.0 | 6.5 | 6.5 | | PM Peak 2040 | 7.5 | 7.1 | 6.5 | 6.6 | All options studied exhibit decreased travel times when compared to existing conditions. # Synchro Model Typical Street Reconstruction # Synchro Model Complete Streets Option ### Case Studies – Lane Reconfiguration #### 9th Street, East Of Emery, Lawrence, KS - ADT = 16,755 VPD - Better traffic flow - Safer turning movements and bicycle lanes #### **Arterials in Kansas City, MO** - Currently evaluating all arterials with ADT < 20,000 VPD - Plan to implement lane reconfiguration at time of repaving #### Case Studies – Lane Reconfiguration #### Mission Road in Kansas City, KS and Prairie Village, KS - ADT's: 15,000 25,000 VPD - Kansas City, KS: from 43rd Street to Belrose Manor - Prairie Village: from 71st Street to 75th Street VERY similar to Kasold corridor - Various cities are planning additional lane reconfiguration improvements along the Mission Road corridor ## Case Studies – Lane Reconfiguration **Burton Street, Grand Rapids, MI** - Arterial (ADT = 15,000 VPD) - School & Park Nearby - Opponents With Concerns Over Congestion, Turning Gaps - Slower Speeds - Less Congestion - Increased Bicycle Traffic - No Apparent Diversion #### Lawyer's Road, Reston, VA - Arterial (ADT = 17,000 VPD) - Speed Limit 40/45 - Suburban Area - 70% Reduction In Crashes - Travel Time Remained Consistent - Increase In Bicycle Use - 74% Agreed It Was An Improvement #### Speeds on Kasold Drive - Drivers are not driving the current speed limit - Re-evaluate Speed Limits and/or - Install/Implement Speed Management Countermeasures - Road Diet is an FHWA Proven Safety Countermeasure and reduces top-end speeders | Location | Speed Limit | 85 th Percentile
Speed | |--|-------------|--------------------------------------| | Kasold between 13 th & 14 th | 35 mph | 43 mph | | Kasold at 10 th Street | 30 mph | 41 mph | | Kasold between 8 th & 10 th | 30 mph | 37 mph | | 27 th St & Kasold Dr crosswalk | 40 mph | 52 mph | - Luten Avenue in Staten Island, New York - Road Diet Near School - RESULTS: The percentage of vehicles exceeding the speed limit <u>decreased by 34 percent</u> along southbound Luten Avenue and <u>decreased by 21 percent</u> in the northbound direction. - US 75 in Sioux County, Iowa Road Diet | Percent of vehicles traveling more than 5 mph | BEFORE | AFTER | |---|------------|------------| | over the speed limit | 43 percent | 13 percent | # Lane Reconfiguration Resources - Knapp, K.K., Welch, T.M. and Witmer, J.A., Converting Four Lane Undivided Roadways to a Three-Lane Cross Section: Factors to Consider, ITE Annual Meeting, 1999 - Knapp, Chandler, et al. for the Federal Highway Administration, Road Diet Informational Guide, 2014 - Kansas City Missouri Public Works Department, Road Diet Analysis, 2015 - Russell & Mandavilli for Kansas State University, Analysis of a Road Diet Conversion and Alternative Traffic Controls, 2003 - AARP and the Walkable and Livable Communities Institute, Road Diets A Livability Fact Sheet, 2014 - Burden, D. and Lagerwey, P., Road Diets: Fixing the Big Roads, Walkable Communities, Inc., March 1999 - Walkable Streets (August 2003), Economic Merits of Road Diets and Traffic Calming - Safe Routes to School National Center (November 2013), **Safe Routes to School Online Guide** http://guide.saferoutesinfo.org/engineering/tools_to_reduce_ crossing_distances_for_pedestrians.cfm#diet - FHWA, Road Diet Case Studies, FHWA-SA-15-052, available at: http://safety.fhwa.dot.gov/road_diets/case_studies/ # FHWA – Road Reconfiguration Review - FHWA has ongoing initiative to review road reconfiguration projects - Worked with FHWA Staff and consultant to review Kasold Concept Plans and Traffic Study - FHWA concurred with the feasibility for the 'Complete Streets' alternative - FHWA provided the following animated drawings to illustrate scenarios for different lane configurations **SPEEDING & AGGRESSIVE DRIVING** # Benefits of Lane Reconfiguration - Reduced Conflict Points - Improved Sight Lines - Less Difficult Crossing Maneuvers - Lower and More Uniform Speeds - Traffic Demands Still Met - Improved Conditions for Others - Supports Local Business - Minimum Costs and Impacts # Safety Benefits of Roundabouts • Slower traffic speeds: Roundabout design speed is 20-25mph - Less conflict points for vehicles and pedestrians - Pedestrians only cross one lane at a time with a protected median # Safety Benefits of Roundabouts - High-severity conflicts of right angle and left-turn head-on crashes greatly reduced - Low speeds allow drivers more time to react to potential conflicts - Low speeds reduce crash severity - Road users travel at similar speeds #### **Typical Stopping Distances** = 53 metres (175 feet) or thirteen car lengths #### The Insurance Institute for Highway Safety (IIHS) Study - •39% overall decrease in crashes - •76% decrease in injury crashes - •90% decrease in fatal or incapacitating injuries # Safety Benefits of Roundabouts Historic Intersection Crash Data for City of Lawrence, KS, as of July 2016 | Year | Number of Pedestrian Crashes at Signals | Number of Pedestrian Crashes at Roundabouts | Number of
Bike Crashes at
Signals | Number of
Bike Crashes at
Roundabouts | |---------------------|---|---|---|---| | 2013 | 11 | 0 | 10 | 0 | | 2014 | 8 | 0 | 7 | 0 | | 2015 | 13 | 0 | 9 | 0 | | 2016 (through June) | 7 | 1 | 7 | 0 | City of Lawrence currently has 20 roundabout controlled intersections and 92 signal controlled intersections #### Roundabout with Bike Lanes - Option 1: Can merge and ride bike as a vehicle in roundabout - Option 2: Can take ramp onto sidewalk and use crosswalks as a pedestrian - Cyclist has less conflicts making left turns - Example: O'Connell Road & E 25th Terrace # **Comparison of Options** | | Typical Street Reconstruction | Complete Streets | |--------------------------------|--|--| | Effect on speeding | Minimal reduction in overall speeds expected; aggressive/speeding drivers may not be reduced | May reduce speeds overall; Road Diets significantly reduce the aggressive/top-end speeders | | Effect on collisions | No anticipated reduction | Road Diets Create less conflict points. Reduction in vehicle collisions by 40 percent. Reduction in injury collisions by 76 percent. Roundabouts Create less conflict points 76 percent reduction in injury crashes 90 percent reduction in fatal and incapacitating injuries | | Left-turn Lane
Design | No offset left-turn lane design | May allow for some positive offset left-turn lane design, which provides improved safety for aging drivers. | | Bicycle Lanes | 5 ft bicycle lanes | Buffered 5 ft bicycle lane (8 ft total); improves safety for bicyclists by creating more space between vehicle lane and bicycle lane | | Pedestrian/School
Crossings | No change in distance to cross roadway | Shorter distance to cross roadway; improves safety for pedestrians/students | # **Comparison of Options** | | Typical Street Reconstruction | Complete Streets | |-------------------------------|--|---| | Estimated Travel Times | 6.2 to 7.1 seconds | 6.5 to 6.9 seconds | | (using software model) | | | | Lane capacity | Capacity of double lane - 3,600 vehicles per | Capacity of single lane - 1,900 vehicles per hour | | Projected estimate – | hour | | | 736 vehicles per hour | | | | on Kasold in 2040 | | | | Driving lane width | 11 ft | 12 ft | | Intersection control | Traffic Signal | Roundabout | | capacity at | Level of service A-B | Level of Service A-B | | Harvard & Kasold | | | | Additional R/W & | Most likely | Not likely | | Easements? | | | | Includes extension of | No | Yes | | bicycle and pedestrian | | (\$250,000) | | facilities | | | | Construction Cost | \$5.13 million | \$3.97 million | | Com | pariso | n of | Costs | |-----|--------|------|-------| | | | | | | | | TOTAL COST TO CITY OF LAWRENCE | \$5.39M | |----------------------------------|------------|----------------------------------|-----------| | TOTAL COST TO CITY OF LAWRENCE | \$6.55M | FEDERAL/STATE SAFETY FUNDING | (\$0.40M) | | ESTIMATED FINAL DESIGN & CA | \$0.45M | ESTIMATED FINAL DESIGN & CA | \$0.45M | | CONCEPT DESIGN COSTS | \$0.13M | CONCEPT DESIGN COSTS | \$0.13M | | ESTIMATED WATERLINE CONSTRUCTION | \$0.57M | ESTIMATED WATERLINE CONSTRUCTION | \$0.57M | | ESTIMATED ROAD CONSTRUCTION | \$5.40M | ESTIMATED ROAD CONSTRUCTION | \$4.64M | | TYPICAL STREET RECONSTRUCTION | I OPTION * | COMPLETE STREETS OPTION * | | #### **DIFFERENCE IN COST = \$1.16M** SHARED-USE PATH ON KASOLD – 6TH STREET TO PETERSON ROAD ~ \$250,000 * Does not include property acquisition costs, assumes traffic signal at 8th Street # Recommended Options #### **Complete Streets Option** #### ✓ Increase in Safety - Reduction in Vehicle Speeds - Reduction In Vehicle Collisions And Injury Collisions at Kasold & Harvard - Shorter Pedestrian/School Crossings - Buffered Bike Lanes Provide Improved Safety for Bicyclists - Extension of Bicycle/Pedestrian Facilities North To Peterson #### ✓ Context Sensitive Design For Residential Area Improved livability and "feel" of the neighborhood #### ✓ Lower Costs - Additional R/W & Easement Requirements are UNLIKELY - Estimated Construction Cost Savings Of \$1,000,000 - Roundabout Requires Less Maintenance and Operational Costs Compared to a Traffic Signal #### Traffic Signal at 8th & Kasold - ✓ Increased Safety - ✓ Better Traffic Flow