

Kasold Drive The Improvement Project

6TH STREET TO BOB BILLINGS PARKWAY

KASOLD DR. Simprovement Project

Project Scope/Concept Study

- Failing pavement and base (PCI 43.8)
- Full Reconstruction needed – base failures, missing curb
- Add sidewalk and bicycle lanes
- CIP 2017 Budget -Infrastructure sales tax
- Concept Study Feb.2015 2016

Public/Stakeholder Outreach

PUBLIC MEETINGS

- May 27, 2015 neighborhood meeting at Christ Community Church
- June 16, 2015 Livewell Healthy Built Environment
- July 7, 2015 Area Business Owners Meeting at University Bank
- July 21, 2015 Presbyterian Manor Meeting
- July 21, 2015 Bicycle Advisory Committee
- September 30, 2015 Lawrence Pedestrian Coalition

STAKEHOLDER OUTREACH

- Sunset Hills Neighborhood Association
- USD 497 School Crossing At Harvard and Kasold
- City Utilities Department Waterline and Sewer
- Westar, Black Hills, AT&T & WOW, Lawrence Fire Medical Department

WEBSITE

- Facilitates Public Involvement
- Provides Real-Time Updates

Historic Traffic Data

- Traffic relatively stable since 1992
 - Actual growth rate = approx. 0.4%
- Growth factor used for projections = 0.5%
 - Fully developed corridor
 - Considers K-10/SLT and BBP extension

Comparison of Record KDOT's 24-Hour Traffic Volumes (vehicles per day, VPD)

Segment	1992	1995	1998	2001	2004	2007	2010	2013
Kasold, 6 th -8th	11,105	12,955	13,370	14,840	15,155	13,645	13,935	13,925
Kasold, 14 th - BBP	13,220	15,265	17,960	15,780	16,640	14,195	14,280	14,735
Harvard, East App.	N/A	2525	3290	3750	4055	3270	2990	3035
Harvard, West App.	N/A	N/A	4500	3660	4105	3855	3745	N/A

Traffic Data

Current Traffic Counts (vehicles per day, VPD)				
Kasold Drive	14,735			
Harvard Road	3,035			
Kasold & Harvard	17,902			
8 th St at Kasold	2,225			
Bus/Truck Traffic	< 3%			

2040 Projected Traffic Counts (vehicles per day, VPD)				
Kasold Drive 16,576				
Harvard Road 3,414				
Kasold & Harvard 20,139				
8 th St at Kasold 2,515				
Bus/Truck Traffic	< 3%			

Peak Traffic Volumes

Current

Peak Hour Traffic Volumes along Kasold, (vehicles per hour, VPH), AM/(PM)

Segment	NB	SB	Total
6 th – 8th	518/(707)	531/(589)	1049/(1296)
8 th – Harvard	499/(526)	436/(531)	935/(1057)
Harvard – 13th	353/(651)	511/(523)	864/(1174)
13 th - 14 th	361/(654)	508/(526)	869/(1180)
14 th – BBP (15 th)	359/(790)	489/(548)	848/(1338)

2040 Projected

Peak Hour Traffic Volumes along Kasold, (vehicles per hour, VPH), AM/(PM)

Segment	NB	SB	Total
6 th – 8th	582/(795)	597/(662)	1180/(1458)
8 th – Harvard	561/(591)	490/(597)	1051/(1189)
Harvard – 13th	397/(732)	574/(588)	972/(1320)
13 th - 14 th	406/(735)	571/(591)	977/(1327)
14 th – BBP (15 th)	403/(888)	550/(616)	954/(1505)

What Did We Consider?

- 5 Lanes (2 Through Lanes in each direction and TWLTL)
- 3 Lanes (1 Through Lane in each direction and TWLTL)
- 4 Lane with Median & Left Turn Lanes
- 2 Lane with Median & Left Turn Lanes
- Mountable Median
- Bicycle Lanes
- Buffered Bicycle Lanes

- Sidewalk
- Shared Use Path
- Traffic Signal
- Single & Double Lane Roundabouts
- Stop-controlled Intersections
- Restricted Turns
- Pedestrian Beacon
- Non-controlled Intersection
- No Improvements

Options Modeled & Evaluated

Typical Street Reconstruction Option

8th Street Intersection

Stop Sign, Traffic Signal, Roundabout, Pedestrian Beacon, Restricted Turns

- Replacement of Water Distribution System
- Extension of Shared Use Path north to Peterson

Existing Kasold Drive

Option -Typical Street Reconstruction

- 2 lanes in each direction
- Median with turn lanes
- Bicycle lanes & Sidewalk
- Traffic signal @ Kasold

Typical Street Reconstruction Option

STA. 10+62.07 TO STA. 18+50.00

STA. 60+90.00 TO STA. 64+40.00

- 11 foot driving lanes
- 5 foot bicycle lanes
- 8' Shared-use path and 6' Sidewalk
- Narrower median

Option -Complete Street Reconstruction

- 1 lane in each direction (8th to 14th Street)
- 2 lanes each direction at signal approaches (6th to 8th & 14th to 15th)
- Median With Turn Lanes
- Buffered Bike Lanes
- Extended Sidewalk Network
- Roundabout at Kasold

Complete Streets Option

Typical 56' Back to Back

STA. 20+75.00 TO STA. 35+53.34 STA. 38+00.00 TO STA. 56+50.00 2 LANE (NOT TO SCALE)

- 12 foot driving lane
- 5-8 feet for bicycle lane
- Median width stays same
- 8' Shared-use path & 6' Sidewalk

Evaluation of Options

Number of Traffic Lanes					
Capacity of Single Lane	1,900 VPH				
Capacity of Double Lane	3,800 VPH				
Peak Hour Kasold, Current	651 VPH				
Peak Hour Kasold, 2040	736 VPH				

Roundabout or Signal?				
Capacity Single Lane Roundabout	1,250 – 1,600 VPH			
Capacity Double Lane Roundabout 2,400 – 3,000 VPH				
Peak Hour at Kasold & Harvard, Current 651 VPH				
Peak Hour at Kasold & Harvard, 204	0 736 VPH			

Lane Reconfiguration *				
Lane Reconfiguration Parameters	10,000 – 25,000 VPD			
Kasold ADT, Current	14,735 VPD			
Kasold ADT, 2040	16,576 VPD			

^{*} Lane reconfiguration parameters have been compiled by numerous studies and similar projects performed and constructed over the past two decades.

Level of Service Results

Harvard & Kasold, AM/PM

Approach	Existing Cond. LOS	Roundabout Option LOS	Signal Option LOS
	Delay (sec.)	Delay (sec.)	Delay (sec.)
EB	B/(B)	B/(A)	B/(B)
	13.2/(12.7)	10.1/(8.1)	11.4/(12.4)
WB	B/(B)	A/(A)	A/(B)
	11.2/(13.8)	6.3/(9.6)	9.4/(15.6)
NB	B/(C)	A/(B)	A/(A)
	12.4/(17.2)	8.6/(9.4)	8.4/(6.9)
SB	B/(B)	A/(B)	A/(B)
	13.3/(14.8)	9.2/(11.7)	8.8/(11.0)

Level of Service Results

8th & Kasold, AM/(PM)

Approach	Existing Cond. LOS Delay (sec.)	Roundabout Option LOS Delay (sec.)	3-Way Stop Option LOS Delay (sec.)	E-Leg Stop Option LOS Delay (sec.)	Signal Option LOS Delay (sec.)
WB	B/C	A/(B)	B/(C)	C/(D)	A/(A)
	11.9/(15.1)	8.8/(12.3)	11.9/(15.1)	21.9/(26.7)	6.4/(6.8)
NB	B/(C)	B/(B)	B/(C)	A/(A)	A/(A)
	14.3/(16.6)	13.6/(10.6)	14.3/(16.6)	0/(0)	3.9/(5.5)
SB	C/(C)	B/(B)	C/(C)	A/(A)	A/(A)
	15.7/(17.2)	11.6/(11.7)	15.7/(17.2)	2.8/(1.7)	5.5/(6.5)

Estimated Travel Times

Kasold Drive, 6th Street to Bob Billings Parkway, NB + SB Totals, (minutes)

	Existing Conditions	Typical Street Stop Signs @ 8 th Signal @ Harvard	Typical Street Signal @ 8 th Signal @ Harvard	Complete Streets Signal @ 8 th Roundabout @ Harvard
AM Peak Current	7.1	6.6	6.3	6.3
PM Peak Current	6.8	6.5	6.2	6.3
AM Peak 2040	7.2	7.0	6.5	6.5
PM Peak 2040	7.5	7.1	6.5	6.6

All options studied exhibit decreased travel times when compared to existing conditions.

Synchro Model Typical Street Reconstruction

Synchro Model Complete Streets Option

Case Studies – Lane Reconfiguration

9th Street, East Of Emery, Lawrence, KS

- ADT = 16,755 VPD
- Better traffic flow
- Safer turning movements and bicycle lanes

Arterials in Kansas City, MO

- Currently evaluating all arterials with ADT < 20,000 VPD
- Plan to implement lane reconfiguration at time of repaving

Case Studies – Lane Reconfiguration

Mission Road in Kansas City, KS and Prairie Village, KS

- ADT's: 15,000 25,000 VPD
- Kansas City, KS: from 43rd Street to Belrose Manor
- Prairie Village: from 71st Street to 75th Street VERY similar to Kasold corridor
- Various cities are planning additional lane reconfiguration improvements along the Mission Road corridor

Case Studies – Lane Reconfiguration

Burton Street, Grand Rapids, MI

- Arterial (ADT = 15,000 VPD)
- School & Park Nearby
- Opponents With Concerns
 Over Congestion, Turning
 Gaps
- Slower Speeds
- Less Congestion
- Increased Bicycle Traffic
- No Apparent Diversion

Lawyer's Road, Reston, VA

- Arterial (ADT = 17,000 VPD)
- Speed Limit 40/45
- Suburban Area

- 70% Reduction In Crashes
- Travel Time Remained Consistent
- Increase In Bicycle Use
- 74% Agreed It Was An Improvement

Speeds on Kasold Drive

- Drivers are not driving the current speed limit
 - Re-evaluate Speed Limits and/or
 - Install/Implement Speed Management Countermeasures
- Road Diet is an FHWA Proven Safety
 Countermeasure and reduces top-end speeders

Location	Speed Limit	85 th Percentile Speed
Kasold between 13 th & 14 th	35 mph	43 mph
Kasold at 10 th Street	30 mph	41 mph
Kasold between 8 th & 10 th	30 mph	37 mph
27 th St & Kasold Dr crosswalk	40 mph	52 mph

- Luten Avenue in Staten Island, New York
 - Road Diet Near School
 - RESULTS: The percentage of vehicles exceeding the speed limit <u>decreased by 34 percent</u> along southbound Luten Avenue and <u>decreased by 21 percent</u> in the northbound direction.
- US 75 in Sioux County, Iowa Road Diet

Percent of vehicles traveling more than 5 mph	BEFORE	AFTER
over the speed limit	43 percent	13 percent

Lane Reconfiguration Resources

- Knapp, K.K., Welch, T.M. and Witmer, J.A., Converting Four Lane Undivided Roadways to a Three-Lane Cross Section: Factors to Consider, ITE Annual Meeting, 1999
- Knapp, Chandler, et al. for the Federal Highway Administration, Road Diet Informational Guide, 2014
- Kansas City Missouri Public Works Department, Road Diet Analysis, 2015
- Russell & Mandavilli for Kansas State University, Analysis of a Road Diet Conversion and Alternative Traffic Controls, 2003
- AARP and the Walkable and Livable Communities Institute, Road Diets A Livability Fact Sheet, 2014
- Burden, D. and Lagerwey, P., Road Diets: Fixing the Big Roads, Walkable Communities, Inc., March 1999
- Walkable Streets (August 2003), Economic Merits of Road Diets and Traffic Calming
- Safe Routes to School National Center (November 2013), **Safe Routes to School Online Guide** http://guide.saferoutesinfo.org/engineering/tools_to_reduce_ crossing_distances_for_pedestrians.cfm#diet
- FHWA, Road Diet Case Studies, FHWA-SA-15-052, available at: http://safety.fhwa.dot.gov/road_diets/case_studies/

FHWA – Road Reconfiguration Review

- FHWA has ongoing initiative to review road reconfiguration projects
- Worked with FHWA Staff and consultant to review Kasold Concept Plans and Traffic Study
- FHWA concurred with the feasibility for the 'Complete Streets' alternative
- FHWA provided the following animated drawings to illustrate scenarios for different lane configurations

SPEEDING & AGGRESSIVE DRIVING

Benefits of Lane Reconfiguration

- Reduced Conflict Points
- Improved Sight Lines
- Less Difficult Crossing Maneuvers
- Lower and More Uniform Speeds
- Traffic Demands Still Met
- Improved Conditions for Others
- Supports Local Business
- Minimum Costs and Impacts

Safety Benefits of Roundabouts

• Slower traffic speeds: Roundabout design speed is 20-25mph

- Less conflict points for vehicles and pedestrians
- Pedestrians only cross one lane at a time with a protected median

Safety Benefits of Roundabouts

- High-severity conflicts of right angle and left-turn head-on crashes greatly reduced
- Low speeds allow drivers more time to react to potential conflicts
- Low speeds reduce crash severity
- Road users travel at similar speeds

Typical Stopping Distances

= 53 metres (175 feet) or thirteen car lengths

The Insurance Institute for Highway Safety (IIHS) Study

- •39% overall decrease in crashes
- •76% decrease in injury crashes
- •90% decrease in fatal or incapacitating injuries

Safety Benefits of Roundabouts

Historic Intersection Crash Data for City of Lawrence, KS, as of July 2016

Year	Number of Pedestrian Crashes at Signals	Number of Pedestrian Crashes at Roundabouts	Number of Bike Crashes at Signals	Number of Bike Crashes at Roundabouts
2013	11	0	10	0
2014	8	0	7	0
2015	13	0	9	0
2016 (through June)	7	1	7	0

City of Lawrence currently has 20 roundabout controlled intersections and 92 signal controlled intersections

Roundabout with Bike Lanes

- Option 1: Can merge and ride bike as a vehicle in roundabout
- Option 2: Can take ramp onto sidewalk and use crosswalks as a pedestrian
- Cyclist has less conflicts making left turns
- Example: O'Connell Road & E 25th Terrace

Comparison of Options

	Typical Street Reconstruction	Complete Streets
Effect on speeding	Minimal reduction in overall speeds expected; aggressive/speeding drivers may not be reduced	May reduce speeds overall; Road Diets significantly reduce the aggressive/top-end speeders
Effect on collisions	No anticipated reduction	 Road Diets Create less conflict points. Reduction in vehicle collisions by 40 percent. Reduction in injury collisions by 76 percent. Roundabouts Create less conflict points 76 percent reduction in injury crashes 90 percent reduction in fatal and incapacitating injuries
Left-turn Lane Design	No offset left-turn lane design	May allow for some positive offset left-turn lane design, which provides improved safety for aging drivers.
Bicycle Lanes	5 ft bicycle lanes	Buffered 5 ft bicycle lane (8 ft total); improves safety for bicyclists by creating more space between vehicle lane and bicycle lane
Pedestrian/School Crossings	No change in distance to cross roadway	Shorter distance to cross roadway; improves safety for pedestrians/students

Comparison of Options

	Typical Street Reconstruction	Complete Streets
Estimated Travel Times	6.2 to 7.1 seconds	6.5 to 6.9 seconds
(using software model)		
Lane capacity	Capacity of double lane - 3,600 vehicles per	Capacity of single lane - 1,900 vehicles per hour
Projected estimate –	hour	
736 vehicles per hour		
on Kasold in 2040		
Driving lane width	11 ft	12 ft
Intersection control	Traffic Signal	Roundabout
capacity at	Level of service A-B	Level of Service A-B
Harvard & Kasold		
Additional R/W &	Most likely	Not likely
Easements?		
Includes extension of	No	Yes
bicycle and pedestrian		(\$250,000)
facilities		
Construction Cost	\$5.13 million	\$3.97 million

Com	pariso	n of	Costs

		TOTAL COST TO CITY OF LAWRENCE	\$5.39M
TOTAL COST TO CITY OF LAWRENCE	\$6.55M	FEDERAL/STATE SAFETY FUNDING	(\$0.40M)
ESTIMATED FINAL DESIGN & CA	\$0.45M	ESTIMATED FINAL DESIGN & CA	\$0.45M
CONCEPT DESIGN COSTS	\$0.13M	CONCEPT DESIGN COSTS	\$0.13M
ESTIMATED WATERLINE CONSTRUCTION	\$0.57M	ESTIMATED WATERLINE CONSTRUCTION	\$0.57M
ESTIMATED ROAD CONSTRUCTION	\$5.40M	ESTIMATED ROAD CONSTRUCTION	\$4.64M
TYPICAL STREET RECONSTRUCTION	I OPTION *	COMPLETE STREETS OPTION *	

DIFFERENCE IN COST = \$1.16M

SHARED-USE PATH ON KASOLD – 6TH STREET TO PETERSON ROAD ~ \$250,000

* Does not include property acquisition costs, assumes traffic signal at 8th Street

Recommended Options

Complete Streets Option

✓ Increase in Safety

- Reduction in Vehicle Speeds
- Reduction In Vehicle Collisions And Injury Collisions at Kasold & Harvard
- Shorter Pedestrian/School Crossings
- Buffered Bike Lanes Provide Improved Safety for Bicyclists
- Extension of Bicycle/Pedestrian Facilities North To Peterson

✓ Context Sensitive Design For Residential Area

Improved livability and "feel" of the neighborhood

✓ Lower Costs

- Additional R/W & Easement Requirements are UNLIKELY
- Estimated Construction Cost Savings Of \$1,000,000
- Roundabout Requires Less Maintenance and Operational Costs Compared to a Traffic Signal

Traffic Signal at 8th & Kasold

- ✓ Increased Safety
- ✓ Better Traffic Flow